Chimera states in multi-strain epidemic models with temporary immunity.
نویسندگان
چکیده
We investigate a time-delayed epidemic model for multi-strain diseases with temporary immunity. In the absence of cross-immunity between strains, dynamics of each individual strain exhibit emergence and annihilation of limit cycles due to a Hopf bifurcation of the endemic equilibrium, and a saddle-node bifurcation of limit cycles depending on the time delay associated with duration of temporary immunity. Effects of all-to-all and non-local coupling topologies are systematically investigated by means of numerical simulations, and they suggest that cross-immunity is able to induce a diverse range of complex dynamical behaviors and synchronization patterns, including discrete traveling waves, solitary states, and amplitude chimeras. Interestingly, chimera states are observed for narrower cross-immunity kernels, which can have profound implications for understanding the dynamics of multi-strain diseases.
منابع مشابه
A new chaotic attractor in a basic multi-strain epidemiological model with temporary cross-immunity
An epidemic multi-strain model with temporary cross-immunity shows chaos, even in a previously unexpected parameter region. Especially dengue fever models with strong enhanced infectivity on secondary infection have previously shown deterministic chaos motivated by experimental findings of antibody-dependent-enhancement (ADE). Including temporary crossimmunity in such models, which is common kn...
متن کاملIncorporating demographic stochasticity into multi-strain epidemic models: application to influenza A
We develop mathematical models of the transmission and evolution of multi-strain pathogens that incorporate strain extinction and the stochastic generation of new strains via mutation. The dynamics resulting from these models is then examined with the applied aim of understanding the mechanisms underpinning the evolution and dynamics of rapidly mutating pathogens, such as human influenza viruse...
متن کاملDeterministic Seirs Epidemic Model for Modeling Vital Dynamics, Vaccinations, and Temporary Immunity
In this paper, the author proposes a new SEIRS model that generalizes several classical deterministic epidemic models (e.g., SIR and SIS and SEIR and SEIRS) involving the relationships between the susceptible S, exposed E, infected I, and recovered R individuals for understanding the proliferation of infectious diseases. As a way to incorporate the most important features of the previous models...
متن کاملTorus bifurcations, isolas and chaotic attractors in a simple dengue model with ADE and temporary cross immunity
We analyse an epidemiological model of competing strains of pathogens and hence differences in transmission for first versus secondary infection due to interaction of the strains with previously aquired immunities, as has been described for dengue fever (in dengue known as antibody dependent enhancement, ADE). Such models show a rich variety of dynamics through bifurcations up to deterministic ...
متن کاملAn SIR epidemic model with partial temporary immunity modeled with delay.
The SIR epidemic model for disease dynamics considers recovered individuals to be permanently immune, while the SIS epidemic model considers recovered individuals to be immediately resusceptible. We study the case of temporary immunity in an SIR-based model with delayed coupling between the susceptible and removed classes, which results in a coupled set of delay differential equations. We find ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chaos
دوره 27 11 شماره
صفحات -
تاریخ انتشار 2017